This Science News Wire page contains a press release issued by an organization and is provided to you "as is" with little or no review from Science X staff.

Studies of membrane vesicles pave the way to innovative treatments of degenerative diseases

January 16th, 2020 Marina Gomzikova, Yury Nurmeev
Studies of membrane vesicles pave the way to innovative treatments of degenerative diseases
Proteome analysis of human MSCs and CIMVs-MSCs. Venn diagram of identified proteins MSCs and CIMVs-MSCs (A). Distribution of the identified proteins in organelles, % of unique identified proteins (B). Credit: Kazan Federal University

A paper came out in Cells in December 2019.

Research team leader Marina Gomzikova, employee of the Gene and Cell Technologies Lab, started working on extracellular microvesicles (ECMVs) in 2013, when she was enrolled in her Ph.D. course. Since then, very promising properties were found in ECMVs derived from human mesenchymal stem cells (MSCs).

ECMVs are microstructures surrounded by a cytoplasm membrane; they have proven to be a prospective therapeutic tool due to their biocompatibility, miniature size, safety, and regenerative properties. Microvesicles can be applied to circumvent the existing limitations in cell therapy without losing in effectiveness. At Kazan Federal University, cytochalasin B-induced membrane vesicles (CIMVs) are currently studied. They are derived from mesenchymal stem cells, which are very similar to natural ECMVs.

In this paper, the authors produced, studied and characterized the biological activity of MSC-derived CIMVs. A number of biologically active molecules were found in CIMVs, such as growth factors, cytokines, and chemokines; their immunophenotype was also described. Most importantly, CIMVs were found to stimulate angiogenesis, the growth of blood vessels, in the same way as stem cells.

Therefore, the team believes that human CIMVs-MSCs can be used for cell free therapy of degenerative diseases. CIMVs-MSCs are able to induce therapeutic angiogenesis, which is necessary for the treatment of ischemic tissue damage (for example, ischemic heart disease, hind limb ischemia, diabetic angiopathies, and trophic ulcers) and stimulate regeneration processes in cases of skin damage (wounds and burns), neurodegeneration (multiple sclerosis and Alzheimer's disease), or traumatic injuries (damage of peripheral nerves and spinal cord injury).

Gomzikova's group continues to research the therapeutic potential artificial microvesicles for autoimmune diseases. Vector properties, i. e. the capacity for delivery, of vesicles for tumor therapy is also of interest.

CIMVs can become a new therapeutic tool in regenerative medicine and a new class of effective and safe medications.

More information:
Angiogenic Activity of Cytochalasin B-Induced Membrane Vesicles of Human Mesenchymal Stem Cells

www.mdpi.com/2073-4409/9/1/95


Provided by Kazan Federal University

Citation: Studies of membrane vesicles pave the way to innovative treatments of degenerative diseases (2020, January 16) retrieved 28 March 2024 from https://sciencex.com/wire-news/340601906/studies-of-membrane-vesicles-pave-the-way-to-innovative-treatmen.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.